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Abstract 

Achieving high-performance inverted perovskite solar cells (PSCs) still remains a significant 

challenge, necessitating innovative approaches in materials selection and manufacturing 

technique optimization of perovskites. In this work, we unveil a paradigm shift in PSCs 

optimization. Through a judicious selection from a repertoire of 60 perovskite variants, we 

identified a composition with exemplary optical, thermal and electrical stability. Employing 

Bayesian machine learning, we navigated a labyrinth of over 1 billion process conditions, 

culminating in a record-breaking efficiency within a mere 80 iterations. Finally, the integration 

of bespoke in-situ polymerized ionic molecules allowed us to further augment performance of 

inverted PSCs, reaching an unparalleled power conversion efficiency of 25.76% (certified at 

25.21%). The PSCs retained 94% of the initial efficiency after continuous operation in nitrogen 

atmosphere at 65 °C for 1,920 hours. This work not only redefines the benchmarks for PSCs 

but also illuminates the path forward for photovoltaic innovations. 

 

Introduction 

The field of photovoltaics has undergone a paradigm shift with the advent of perovskite 

solar cells (PSCs), which have emerged as frontrunner materials due to their exceptional 

optoelectronic properties, ease of fabrication, and cost-effectiveness1-6. Since their initial 

demonstration in 2009, PSCs have experienced an unprecedented surge in power conversion 

efficiencies (PCEs), improving from an initial 3.8% to over 26% within more than a decade, 

rivaling and even surpassing traditional silicon-based solar cells7-9. 

Despite this impressive progress, the journey towards achieving optimal performance and 

long-term stability in PSCs is still fraught with challenges. The intrinsic instability of perovskite 

materials, coupled with their susceptibility to environmental factors such as humidity, 

temperature, and oxygen, poses significant hurdles to their commercialization10, 11. Ion 
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migration within the perovskite lattice, leading to material degradation and device failure, 

further complicates the stability issue12-15. 

The vast and complex parameter space of perovskite fabrication, encompassing variations 

in composition, morphology, and processing conditions, adds another layer of complexity to 

the optimization process16, 17. Traditional experimental methodologies, reliant on iterative trial-

and-error, are rendered impractical given the enormity of the parameter space, with many 

trillions of possible process conditions18-20. This underscores the importance of adopting 

innovative strategies to accelerate the identification of optimal material combinations and 

process parameters. 

In response to these challenges, this work adopts a holistic and innovative approach, 

integrating advanced machine learning techniques with molecular engineering to navigate the 

labyrinth of perovskite optimization. We started our approach from a comprehensive library of 

60 perovskite compositions and meticulously identified a variant that exhibited unparalleled 

optical, thermal and electrical stability. Utilizing Bayesian machine learning (ML), we then 

explored a high-dimensional parameter perovskite film preparation space of over 1 billion film 

formation process conditions and achieved a device efficiency exceeding 25% within just 80 

iterations. This result underscores the efficiency of ML in process optimization. 

To further augment device efficiency and stability, we have then introduced the in situ 

polymerization of ionic polymer into perovskite as a grain boundary modulator. The 

polymerizable ionic molecule, which includes a constellation of functional groups, is shown to 

provides a robust protection and passivation to the perovskite film, which improve the 

efficiency and tolerance against light, heat and moisture of PSCs.21, 22. By integrating the 

machine learning and molecular engineering approach, the inverted PSCs culminated in a PCE 

of 25.75%, featuring a high open circuit voltage (VOC) of 1.19 V, with a certified efficiency of 

25.21%. The unencapsulated PSCs retained 94% of the initial efficiency after 1,920 hours at 

maximum power point (MPP) tracking under continuous 1-sun illumination at 65 °C in N2 

atmosphere, setting a new benchmark in PSC stability. This work not only redefines the 

performance benchmarks for PSCs but also provides a comprehensive framework for the design 

and optimization of future photovoltaic devices, showcasing the transformative impact of 
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integrating machine learning and molecular engineering in the field. 

Components screening 

As depicted in Figure 1a, a systematic screening process was conducted across 60 

compositions to identify the most stable perovskite formulations. Perovskite structures, 

characterized by an ABX3 framework, typically involve a monovalent cation “A”, lead (Pb) as 

“B”, and a halogen element as “X”. Our approach for customizing perovskite compositions 

involved introducing various cations (FA, MA, Cs, Rb, K) at the “A” site and controlled halide 

mixtures (Br, Cl) at the “X” site (up to 15%), leading to design of 60 distinct perovskite 

formulations, as documented in Supplementary Table 1. Perovskite films were prepared by 

the vacuum flash-assisted growth technique (VFGT)23, 24. Recent advancements in VFGT have 

shown promising results in not only matching the thermal stability offered by spin-coating but 

also in potentially outperforming it, particularly noted in the stabilization of the black phase, 

which is crucial for the optimal performance of perovskite films. Supplementary Figure 1 

displays the perovskite aspect with contrasting yellow and black phases among the 60 

compositions, highlighting the impact of precursor composition on film phase purity. The 

perovskite films with various compositions were subjected to photo-thermal aging in a 

controlled glove box environment, enduring heat conditions of 50 °C under a nitrogen 

atmosphere, complemented by solar irradiance (AM1.5 illumination, 100 mW cm−2). Regular 

UV-vis spectra measurements between the 600-850 nm range provided us insights into the 

optical degradation of the films. The statistical data on the T90
A lifetimes for all 60 compositions, 

along with the decay curves of six subset formulations, are presented in Figure 1b and 

Supplementary Figure 2. Notably, the employment of MACl as additive (ranging from 5 to 

50%) positively influenced the optical stability of the films, with a highest point observed at a 

50% addition level,25, 26 as shown in Supplementary Figure 3. Among these compositions, 

numbers 14 (FAPbI3+50% MACl), 35 (FAPbI3+3% CsI+7% MAI), and 57 

((MA0.02Cs0.05FA0.93)Pb(I0.97Br0.01Cl0.02)3 + 50% MACl) stood out for their exceptional thermal 

stability, with T90
A lifetimes exceeding 2,000 hours. 

However, photothermal stability is only one aspect of the overall robustness of the devices. 
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Operational stability, measured through MPP tracking until the device efficiency drops to 90% 

of its initial value (T90
P lifetime), is equally crucial. These assessments were conducted under 

environmental conditions of 30 °C and 40-50% relative humidity (RH). The corresponding T90
p 

data for different components under MPP testing and the decay of J-V curves over time are 

detailed in Figure 1c. Supplementary Figure 4 provides data for some compositions, offering 

a clear visual representation of the decay of J-V curves over time. This figure effectively 

illustrates the differences in stability among the compositions and demonstrates the method 

used to calculate the time to 90% degradation. Specifically, components 13 (FAPbI3+30% 

MACl), 14 (FAPbI3+50% MACl), 57 (MA0.02Cs0.05FA0.93)Pb(I0.97Br0.01Cl0.02)3 + 50% MACl), 

and 58 ((Cs0.05MA0.15FA0.80)PbI3) exhibited exceptional operational stability, making them 

strong candidates for further investigation. The culmination of these photo-thermal and 

operational stability experiments led to the selection of composition 57 for in-depth analysis. 

This composition not only demonstrated robust light-absorption characteristics but also stood 

out for its exceptional stability in solar cells, making it a prime candidate to advance the study 

of PSC lifetimes. 
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Fig. 1 Stability analysis and screening of 60 multi-component perovskites. a, Schematic diagram of 

the screening of the perovskite components stability. The multi-component perovskite film was 

subjected to photo-thermal aging, and some of the prepared devices were subjected to photo-thermal 

electrical aging. Characterization methods include UV-vis absorption spectroscopy (Abs.) and current-

voltage curve changes with time. b, Colormap representation of the T90
A lifetime of 60 different 

perovskite samples subjected to aging at 50 °C under a nitrogen atmosphere and illuminated with 100 

mW cm-2 of metal halide light. c, Colormap representation of the T90
P efficiency lifetime of 60 perovskite 

devices continuously tested under 30 °C, 40-50% RH and 100 mW cm−2 metal halide lamp illumination 

using MPP tracking.  

 

Machine learning for film formation parameters optimization 

Next, we applied Bayesian optimization (BO) within a sequential machine learning 

paradigm to optimize the perovskite film formation VFGT parameters to maximize the PCE of 

perovskite thin-film photovoltaic solar cells. These parameters are provided in the experimental 
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section (Supplementary Material). The optimized parameters resulted in a PCE under test 

conditions of 25.32%, a short-circuit current density (JSC) of 25.69 mAcm−2, a VOC of 1.182 V 

and a fill factor (FF) of 83.3%. Figure 2a illustrates the methodology used. To systematically 

navigate the complex experimental parameter space, several rounds of experimentation were 

performed, with the aim of gradually learning the relationship between this space and the device 

efficiency, while identifying with increasing confidence and accuracy regions of the space 

resulting in peak PCE values. 

In a preliminary step, a search space, optimizing experimental scope and feasibility, was 

defined. Initially, 45 process conditions were tested to validate this search space, revealing a 

PCE ranging from 5.6% to 21.9%, confirming the potential of the selected space to significantly 

modulate PCE (Supplementary Figure 5, the range of the considered search space is shown 

in Supplementary Table 2). Subsequently, the BO campaign was launched. To match the 

capacity of the thermal evaporation process, batches of 20 samples were processed 

simultaneously, optimizing cost-effectiveness by balancing measurement time against model 

feedback frequency. The initial manual sampling was informed by the preliminary screening, 

while aiming for wide coverage across process variables and minimizing solvent use 

(Supplementary Figure 6). Upon fabrication of multiple devices under the same conditions, 

this initial sampling showed significant PCE variability, particularly at lower efficiencies, with 

an average PCE spread of 3.2%. This variability – which can be attributed to measurement and 

sampling errors – was mitigated in our approach by taking the mean PCE across four devices 

per condition27. With this approach, an initial mean PCE of 20.1% was obtained for this batch 

(Supplementary Figure 7). 

The initial sample served as the basis for constructing a surrogate model, predictive of the 

objective function. For a comprehensive explanation of this process, encompassing the relevant 

mathematical formulas and methodologies, readers are directed to the detailed discussion in the 

Supplementary Information, specifically within the 'Machine Learning Methodology' section. 

We then employed a compounded acquisition function to identify new promising conditions for 

experimental validation. In this compounded acquisition function, the surrogate model was 

combined with probabilistic constraints, respectively corresponding to qualitative film quality 
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data, as well as the individual PCE measurements for the 45 preliminary devices, fabricated to 

validate the scope of the search space. The goal of these probabilistic constraints was to 

augment the acquisition function based on the surrogate model with secondary, related – though 

not directly transferable – information sources. With each batch, the BO algorithm’s search 

space became more targeted, increasingly focusing on higher PCE regions (Supplementary 

Figures 8 and 9). The second batch revealed a fine-tuning of the search range, which became 

narrower as more data was gathered (Supplementary Figure 9). The steady progress and 

subsequent diminishing returns are graphically depicted in Supplementary Figures 10 and 11. 

By the third batch, the mean PCE had increased to 25.1%, with a peak at 25.3%, suggesting a 

plateau in the PCE improvement trajectory, and surpassing published records.23 This 

advancement demonstrates the efficacy of our methodical optimization strategy in pushing the 

boundaries of PSC performance (Supplementary Figure 12 and 13). The gradual refinement 

of the surrogate model as more data is gathered can be visualized through contour plots, 

visualizing the evolution of the predicted objective function across two-dimensional cross-

sections of the process variable space (Supplementary Figures 8, 11 and 14). It is noteworthy 

that these contour plots did not show significant changes post the second batch, suggesting that 

convergence has indeed been reached. Finally, Figures 2c-f and Supplementary Figure 14 

present the last set of contour plots from the final optimization round, indicating only minor 

adjustments, and solidifying our decision to conclude the campaign. Based on the final set of 

contour plots, a refined range of the various process parameters, resulting in maximized PCE 

values, can be delineated (Supplementary Table 3). The process condition resulting in the best 

PCE measured corresponded to the following parameter combination: DMF/DMSO/NMP 

solvent ratio at 85/15/0, perovskite precursor concentration at 1.4 M, annealing temperature set 

to 135°C, vacuum pressure maintained at 20 Pa, and vacuum application duration fixed at 21 

seconds. Overall, our integrated approach, blending machine learning with empirical insights, 

achieved remarkable efficiency enhancements and presents a robust model for optimizing 

material properties in complex multidimensional spaces.  



Please cite this paper as: B. Zhang,1 H. Zeng, H. Yin, D. Zheng, Z. Wan, C. Jia, T. Stuyver, J. Luo, Th. Pauporté, Combining Machine 

Learning, Component Screening and Molecular Engineering for the Design of High-Performance and Stable Inverted Perovskite Solar 

Cells. Energy Environ. Sci. 17 (2024) 5532 – 5541. 

https://doi.org/10.1039/d4ee00635f 

9 

 

 

Fig. 2 Schematic of sequential learning optimization of PSCs with probabilistic constraints. a, 

Planning, manufacturing, measuring and model training & prediction workflow. This workflow is 

typically iterated until the target efficiency is achieved or the maximum experimental budget is reached. 

b, The acquisition process for the final sampling round in this study. Plot of the predicted and measured 

PCE values for both the initial batch and the first selection of acquired points; the best PCE value 

measured so far is denoted by the bold black curve. c-f, Sample of the 2D contour plots for the surrogate 

objective function: (c) DMF vs. NMP volumes, (d) DMSO vs. perovskite precursor concentration, (e) 

annealing temperature vs. NMP volume, (f) vacuum pressure vs. NMP volume. Maximum surrogate 

objective function values across a sample of process conditions at every grid point are visualized. 
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Layer engineering by a multifunctional polymeric compound  

The ionic characteristics of perovskite crystal enable molecular defect passivation 

approaches through the interaction between functional groups and defect sites. Further, a 

functional molecule, cryloyloxyethyltrimethylammonium tetrakis(pentafluorophenyl)borate 

(AETA-BCF, Figure 3a), that was meticulously crafted to include a constellation of functional 

groups was introduced into perovskite films, to simultaneously enhance the efficiency and 

stability of inverted PSCs. Central to its design is the polymerizable acryloyl moiety (C=C), 

which upon thermally induced polymerization, initiates linearly polymerized, engendering a 

meshwork within the perovskite matrix. Fourier Transform Infrared Spectroscopy (FTIR) 

analysis before and after polymerization furnishes additional verification of the in-situ linearly 

polymerization process. Compared to the un-polymerized perovskite films, the polymerized 

samples exhibited significant reductions in the vibrational characteristics of C=C, C-O, C=O, 

and CH2=CH groups, as evidenced by ν=CH (3102 cm−1), ν=CH2 (3055 cm−1), and γ=CH2 (870 

cm−1)28. These changes indicate that some molecules were successfully linearly polymerized, 

confirming the effectiveness of our linearly polymerized strategy (Supplementary Figure 15). 

Photographs in Supplementary Figure 16 display AETA-BCF in both powder and solution 

form before (a) and after (b) the polymerization process. As observed, the solutions dissolved 

in DMF are clear and transparent before polymerization. After polymerization, the solution 

becomes a turbid suspension, reflecting the formation of a polymer network and decreased 

solubility. Transmission electron microscopy (TEM) and nuclear magnetic resonance provides 

unequivocal evidence of in-situ linearly polymerized within the perovskite, delineating the 

amorphous and crystalline domains (Supplementary Figures 17-19). The perovskite crystal 

lattice is discerned with pronounced clarity, with the polymer matrix enveloping the grain 

boundaries—affirming the successful polymerization and stabilization conferred by the novel 

compound. To verify the interaction between AETA-BCF and the perovskite structure and to 

confirm the optimized composition of the doped perovskite films, X-ray Photoelectron 

Spectroscopy (XPS) analysis was conducted. The observed shifts in the binding energies of the 
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Pb 4f peak effectively demonstrate the interaction between AETA-BCF molecules and the 

perovskite. Additionally, the presence of C=O, C-N, C-O, and C-C peaks in the C 1s spectrum 

confirms the successful incorporation of AETA-BCF into the perovskite matrix (Supplementary 

Figure 20). Our examination, illustrated in Figure 3a, reveals the transformative impact of 

AETA-BCF on the film formation and crystallization processes in perovskite structures. The 

inherent uncontrolled conditions in perovskite synthesis often yield a significant quantity of 

uncoordinated Pb2+ ions and atomic defects involving lead and iodine. However, the 

incorporation of AETA-BCF, with its unique C=O functional group acting as a Lewis base, 

facilitates the formation of coordination bonds with these uncoordinated Pb2+ ions, effectively 

stabilizing them. Moreover, the presence of amine and fluorine atoms in AETA-BCF not only 

allows for hydrogen bond interactions with the perovskite structure but also imparts enhanced 

hydrophobic properties. This multifaceted interaction between AETA-BCF and the perovskite 

matrix plays a crucial role in defect passivation, promoting superior crystallization and 

hydrophobicity. Consequently, this leads to the formation of high-quality perovskite films 

characterized by lower defect densities and improved stability. 

  Our DFT calculations, utilizing FAPbI3 as a simplified model, delved into the intricate 

interactions between the chosen molecule and the perovskite structure. We investigated three 

prevalent defect models: lead vacancy (VPb), iodine vacancy (VI), and PbI-antisite, with the initial 

defect models presented in Figures 3b-d. The differential charge density, portrayed in Figures 

3e-f, elucidates the charge transfer dynamics between the molecule and the uncoordinated Pb2+, 

I-, and FA+ ions. This interaction fosters electron cloud delocalization and the formation of 

coordination bonds, theoretically validating our approach to mitigate defect formation. Further 

insights are gleaned from Supplementary Figures 21-24, where we showcase the optimized 

defect state density (DOS) and electronic structure in comparison to the original models. We 

observed that surface defects on the perovskite, particularly those involving lead and iodine 

vacancies and antisite defects, introduce new hybridized states. These emergent trap states 

subtly modulate the conduction and valence band edges, potentially leading to charge capture. 

Crucially, the charge transfer facilitated by the passivation molecule to the perovskite surface 
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defects effectively neutralizes gap states. This phenomenon is pivotal in creating perovskite 

films with a remarkably low defect density, a cornerstone for enhancing the overall performance 

and stability of perovskite-based devices. The Kelvin Probe Force Microscopy (KPFM) 

analysis demonstrated a more uniform surface potential across the perovskite films treated with 

AETA-BCF, compared to the untreated samples (Supplementary Figure 25). This uniformity 

indicates a reduction in local charge traps and defects, corroborating the decreased density of 

defect states observed in our DFT studies. Our scanning electron microscope (SEM) analysis 

revealed that perovskite films, both with and without molecular passivation, displayed 

pronounced morphological changes. Optimized films, as shown in Supplementary Figure 26, 

exhibited larger grains and improved cross-sectional morphology. Complementing this, time-

resolved photoluminescence (TRPL) data (Supplementary Figure 27) indicated a reduced 

lifetime in the passivated perovskite, suggesting lower recombination rates and more efficient 

charge dynamics. To further elucidate the specific role of molecular optimization in suppressing 

electron-hole recombination, additional Time-Resolved Photoluminescence (TRPL) tests were 

conducted on a Glass/perovskite structure. The TRPL data (Supplementary Figures 28) 

indicate that the passivated perovskite films exhibit significantly enhanced lifetimes, suggesting 

reduced recombination rates and more efficient charge dynamics. 

This polymer improves the mechanical elasticity of the perovskite layer, mitigating the 

disintegration of the perovskite structure as evidenced by post-heating structural analysis 

(Figure 3a). The molecule's quaternary ammonium segment (-N+(CH3)3) effectively passivates 

intrinsic defect states that compromise the perovskite's integrity. Concurrently, the ester 

functionality (C=O) is anticipated to engage in robust coordination interactions, forming robust 

Pb-O bonds that enhance molecular adhesion to the perovskite surface.29 The hydrophobic 

character of the molecule is predominantly imparted by the pentafluorophenyl moieties 

appended to the borate nucleus.30 These fluorinated aromatic groups are renowned for their 

hydrophobicity, proffering moisture resistance that is vital to the longevity and operational 

stability of perovskite-based devices.31 The deliberate integration of these groups aims at 

conferring a hydrophobic sheath over the perovskite surface, thereby curbing moisture ingress, 
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a well-known cause of perovskite degradation.32 Furthermore, the voluminous nature of the 

pentafluorophenyl groups introduces spatial bulk around the borate core, averting tight packing 

of molecules. This strategic steric arrangement is projected to diminish non-radiative 

recombination by thwarting the agglomeration of molecules at the grain boundaries, potentially 

prolonging charge carrier lifetimes and thereby amplifying device efficiency. 
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Fig. 3 Molecular engineering of the perovskite. a, Comparative analysis of chemical structures and 

defect passivation mechanisms. Left: depicts the chemical structure of AETA-BCF and the process of 

in situ polymerization under heating conditions, illustrating the molecular arrangement and 

polymerization dynamics. Right: schematic representation of the distribution of defects in perovskite 

materials, alongside the mechanism of defect passivation by organic polymer molecules, highlighting 

the interaction between the perovskite crystal and the organic passivators. DFT modeling of AETA-

perovskite interactions and common defects impact. Panels (b-g) illustrate the influence of AETA 

interactions with perovskite on the formation of common defects: Pb vacancy (VPb), I vacancy (VI), and 

PbI antisite (PbI-antisite) defects, and black circle represents the location of the defect. Panels (b), (c), and 

(d) present side views of the original atomic structures of unmodified perovskite with defects: VPb, VI, 

and PbI-antisite, respectively. Panels (e), (f), and (g) show side views of the charge density differences and 

atomic structures of the corresponding three defects after AETA optimization. The brown, blue, pink, 

black, and purple spheres represent C, N, H, Pb, and I atoms, respectively. Blue regions indicate 

decreased charge density, whereas yellow regions denote increased charge density. 

 

Solar cells characteristics and stability 

To investigate the performance of our optimized perovskite layers, we fabricated devices 

with the ITO/NiOx/MeO-2PACz/perovskite/PCBM/BCP/Ag structure. We optimized the 

concentration of the AETA-BCF additive, finding that 1.5 mg/mL yielded devices with optimal 

performance, as shown in Supplementary Figure 29. The control devices, optimized using 

machine learning, exhibited a reverse-scan PCE of 25.32%, with a JSC of 25.69 mAcm−2, an 

open-circuit voltage (VOC) of 1.182 V, and a fill factor (FF) of 83.3%. Forward-scan 

measurements showed a PCE of 24.93%, Jsc of 25.70 mAcm−2, a VOC of 1.181 V, and a FF of 

82.1%, indicating a significant hysteresis effect, as displayed in Supplementary Figure 30. In 

contrast, the AETA-BCF-modified devices demonstrated superior performance, with the best 

target device exhibiting a reverse-scan PCE of 25.76%, a JSC of 25.71 mAcm−2, a VOC of 1.192 

V, a FF of 84.1%, and a forward-scan PCE of 25.62%, of 25.70 mAcm−2, a VOC of 1.191V, a 

FF of 83.7%, showing negligible hysteresis (Figure 4a). The stabilized PCE was 25.60%, as 

shown in Supplementary Figure 31. Figure 4b displays the Gaussian fitted statistical 

distribution of PCE for both control and target devices, with an average PCE of 25.05% for 
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control devices and 25.60% for target devices, further confirming the effectiveness of AETA-

BCF. Our best device, optimized based on AETA-BCF, was sent to the China National 

Photovoltaic Product Quality Inspection & Testing Center for certification, confirming its 

performance with a PCE of 25.21% (VOC = 1.191V, FF = 82.32%, and JSC = 25.71 mA cm−2), 

as shown in Supplementary Figure 32. The external quantum efficiency (EQE) spectra 

(Supplementary Figure 33) resulted in an integrated JSC of 25.43 mAcm-2. These values are 

marginally lower than those derived from J-V measurements, yet they exhibit good alignment 

with the current values recorded during JV testing. The addition of AETA-BCF showed a 

significant improvement in PCE, correlating with enhanced VOC and FF, as well as JSC, as 

indicated by the transient photocurrent (TPC) results (Supplementary Figure 34). The target 

devices exhibited faster decay compared to control devices, indicating more efficient charge 

extraction, which accounts for the increased VOC and FF. The increase in JSC is attributed to 

suppressed recombinations and effective charge extraction. 

The operational stability of the high-efficiency inverted PSCs under aging conditions was 

evaluated using the International Summit on Organic Photovoltaic Stability ISOS-L-2 protocol. 

To enhance device stability, we used copper as the electrode instead of the original silver 

electrode for aging tests. Therefore, both control and target devices experienced a three percent 

drop in efficiency. The long-term operational stability of the encapsulated control and target 

PSCs was assessed by MPP tracking under constant simulated AM1.5G illumination (100 mW 

cm−2). The AETA-BCF optimized devices demonstrated robustness in two distinct aspects of 

stability. Firstly, they exhibited excellent photo-thermal and -operational stability, which refers 

to their ability to retain performance under prolonged exposure to high temperatures, as 

evidenced by maintaining about 94% of the initial efficiency (22.2% to 20.87%) after 1,920 

hours at 65 °C in N2 atmosphere. This 94% stability, assessed through J-V curve testing every 

20 hours, encapsulates both photo-thermal endurance and operational resilience, reflecting the 

device's robust performance in real-world conditions. Secondly, their operational stability, 

which pertains to the durability of the device under normal working conditions, was also 

remarkable. This was showcased in Figure 4c, where the devices were protected under an N2 
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atmosphere, simulating the stability of the devices during regular operation. In comparison, the 

control devices, after rigorous component screening, also showed relatively good thermal and 

operational stability, maintaining about 85% of the initial efficiency (22.1% to 18.7%) after 

1,920 hours of aging at 65 °C in N2 atmosphere, as shown in Figure 4d. The stability of the 

best devices is illustrated in Figure 4e. The stability in the J-V curves is consistent with the 

stable output before and after aging at the MPP. This characteristic of operational stability and 

thermal stability throughout the aging process represents a significant improvement over the 

current state-of-the-art technologies. In contrast to other organic material-based devices where 

FF significantly decreases, the FF in devices prepared by this process remained almost constant 

during aging. As shown in Figure 4f, the control device's FF and PCE output exhibited severe 

fluctuations compared to the target devices. Water contact angle measurements were utilized to 

assess the moisture stability of perovskite films after adding AETA-BCF and polymerization. 

The results demonstrated a significant enhancement in hydrophobicity: the contact angle of the 

perovskite films increased from 43.45° to 60.77° after polymerization (Supplementary Figure 

35). To further investigate the air stability of our devices, PSCs were exposed to ambient air 

and their performance was assessed. The results demonstrated that, compared to control PSCs 

without additive, the target PSCs retained 97% of their initial efficiency after 420 hours of 

exposure, whereas the efficiency of control PSCs declined to below 93%. This significant 

outcome highlights the effectiveness of our strategy to enhance the air stability of PSCs 

(Supplementary Figure 36). These data indicate that the combination of component screening, 

machine learning, and molecular engineering represents a solid step towards the optimizing of 

the solar cell performances while reaching high stability. 
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Fig. 4 Photovoltaic performances of PSCs. a, J–V curves of the best-performing target device. b, 

Histograms showing the device efficiencies of 28 cells per type, fitted with Gaussian distributions (solid 

lines). c-d, MPP tracking J–V curves for control and target PSCs aged at 65 °C with continuous light 

illumination (100 mW cm-2) for 1,920 hours in N2. e-f. The long-term stability for PSCs tracking of 
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control and target devices, data points originated from J-V scan. 

Conclusions 

In summary, we have successfully unveiled a paradigm shift to develop efficient and stable 

inverted PSCs. Our approach combined component screening, machine learning and molecular 

engineering. Through a judicious selection from a repertoire of 60 perovskite variants, we have 

identified a composition with exemplary optical, thermal and electrical stability. Employing 

Bayesian machine learning, we have navigated a labyrinth of over 1 billion process conditions, 

culminating in a record-breaking efficiency within a mere 80 iterations. Finally, the integration 

of bespoke in-situ linearly polymerized ionic molecules allowed us to further augment device 

performance, reaching a power conversion efficiency of 25.76% (certified at 25.21%). 

Additionally, through the synergistic effect of selecting stable components and incorporating 

hydrophobic molecules, the devices retained 94% of their initial efficiency after operating for 

1,920 hours under continuous 1-sun illumination and MPP tracking at 65 °C in N2 atmosphere. 

Finally, this work describes an innovative strategy that can be successfully implemented to 

considerably accelerate the development and optimization of photovoltaic and, beyond, other 

optoelectronic devices. 
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